

Applikationsbeispiel zur Verwendung einer RCCA-A ohne HMI

Inhalt

Vorbedingungen	2
Hardwarekonfiguration	2
Konfiguration der TST	2
Programmbausteine	3
Variablen	3
Beispielbibliothek	4
Sicherheitsprogramm	4
F-Parameter	6
Programmablauf Standardprogramm	7
Beobachten und Steuern	10

Vorbedingungen

Um dieses Beispiel nachvollziehen zu können sind folgende Komponenten notwendig: RCCA-B/C/D mit aktueller Firmware (V1.0.30 oder neuer) GSMDL-Datei für die TST RCCA, Siemens S7-1200F SPS, Entwicklungsumgebung Siemens TIA Portal nicht älter als Version V15. TST FUF2/FU3F mit aktivierter RCCA-Funktionalität und aktiviertem Parameter P.804 = 1.

Um die Interaktion zwischen PG, SPS und RCCA zu vereinfachen wird die Verwendung eines Ethernetswitches empfohlen. Der Adressbereich des verwendeten Adapters im PG ist auf 192.168.0.xxx/24 einzustellen.

Hardwarekonfiguration

Erstellen Sie ein neues Projekt und fügen Sie ihre Steuerung dem Projekt hinzu. Im Beispiel wird eine Siemens S7-1212FC DC/DC/DC verwendet. Zu Kommunikation über eine RCCA ab Variante B ist die Unterstützung von ProfiSAFE[®] Voraussetzung.

Haben Sie die GSDML bereits in Ihr Projekt integriert, wählen Sie aus dem Hardwarekatalog unter "Weitere Feldgeräte" -> "PROFINET IO" -> "I/O" -> "FEIG ELECTRONIC GmbH" -> "Door Control" die zu verwendende Hardwarevariante "TST-RCCA-x" aus und fügen sie Ihrem Projekt hinzu.

Stellen Sie unter "Netzsicht" die ProfiSAFE-Verbindung zwischen Steuerung und RCCA her.

Konfiguration der TST

Überprüfen Sie in der Torsteuerung die Einstellungen der Eingangsprofile für Eingang 13 und 14 sowie Ausgang 21, 22 und 23.

Stellen Sie folgende Profile ein:

P.50D = 0101 Auf-befehl

P.50E = 0701 Zu-Befehl P.D01 = 0701 blinkend bei Auf- und Zufahrt P.D02 = 0101 Tor in Auf-Position P.D03 = 0201 Tor in Zu-Position

Programmbausteine

Variablen

Um die spätere Verschaltung zu vereinfachen, legen Sie eine Variablentabelle mit den in Abb.1 gezeigten Variablen an.

Standard-Variablentabelle						
		Name	Datentyp	Adresse		
1	-	m_Open	Bool	%M100.0		
2	-00	m_Stop	Bool	%M100.1		
З	-00	m_Close	Bool	%M100.2		
4	-00	m_In13	Bool	%M100.3		
5	-	m_In14	Bool	%M100.4		
6	-00	Q_Blink	Bool	%Q0.0		
7	-00	Q_Open	Bool	%Q0.1		
8	-	Q_Closed	Bool	%Q0.2		
	_	\ _		•		

Abbildung 1

Zur korrekten Steuerung der Sicherheitsfunktionen der RCCA legen Sie folgende Variablen an:

	Safety						
		Name	Datentyp	Adresse			
1	- 10	F-Open	Bool	%Q2.0			
2	- 📶	F-Stop	Bool	%Q2.1			
З	- 10	F-Close	Bool	%Q2.2			
4	- 📶	Mask_F-Open	Bool	%Q2.4			
5	- 📶	Mask_F-Stop	Bool	%Q2.5			
6	- 📶	Mask_F-Close	Bool	%Q2.6			
7	- 📶	Q-EM_Stop	Bool	%Q3.0			
8		ACK	Bool	%M100.0			
9		Trigger_E-Stop	Bool	%M100.1			
10		ACK_Req	Bool	%M100.2			

Abbildung 2: Sicherheitsvariablen

Beispielbibliothek

Öffnen Sie unter "Globale Bibliotheken" "Feig RCCA V1.1" und Kopieren sie aus den Vorlagen "Bausteine" und "PLC Datentypen" an die entsprechende Stelle in Ihrem Projekt.

Sicherheitsprogramm

Öffnen Sie den Baustein "Main_Safety_RTG1". Dieser Baustein wird bei Verwendung einer fehlersicheren Steuerung automatisch erstellt und beinhaltet das Programm für die Sicherheitsablaufgruppe 1. Dieser Programmteil übernimmt die eigentliche Ansteuerung der fehlersicheren Komponenten und somit die endgültigen Fahrbefehle an die RCCA.

Netzwerk 2 beinhaltet die Behandlung des fehlersicheren Ausgangs der RCCA. Dieser ist mit dem internen Not-Aus der Torsteuerung verbunden. Um ihn zu steuern, wählen Sie den Standardbaustein "ESTOP1" aus der Standardbibliothek aus und fügen ihn im Netzwerk 2 ein. Die Variablen zur Ansteuerung finden Sie in der Variablentabelle "Safety[10]".

•	Netzwerk 2: E-Stop		^		🕨 🛅 Allgemein	
	Kommentar			Þ	🕨 📊 Bitverknüpfung	
				 Sicherheitsfunktionen 		
				E	💶 ESTOP1	NOT-HALT/NOT-AUS bis Stop-Kategorie 1
	_		E	🖶 TWO_H_EN	Zweihandüberwachung mit Freigabe	
		ESTOP1		ι.	HUT_P	Paralleles Muting
		LSIOFI	No	ι.	🖶 EV1oo2DI	1002 (2v2)-Auswertung mit Diskrepanzanalyse
	EN	0	%Q3.0	1.	EDBACK	Rückführkreisüberwachung
	"Trigger E-Stop" - 0 E STOP		false	ι.	🚘 SFDOOR	Schutztürüberwachung
		Q_DEDAI	Name of o	11	ACK_GL	Globale Quittierung aller F-Peripherien einer F-Ablaufgruppe
			"ACK Reg"	Þ	S Zeiten	
	"ACK" - ACK	ACK_REQ		Þ	I Zähler	
		DIAG	5#10#00	Þ	Vergleicher	
		ENU -	_	Þ	🕨 主 Mathematische Funk	
Ab	bildung 4: Netzwerk	2 – ESTOP1		-		

In Netzwerk 3 werden alle Fahrtmasken fest auf den Wert "TRUE" gesetzt. Eine gesonderte Auswertung ist für dieses Beispiel nicht notwendig. Fügen Sie den Baustein wie in der Abbildung gezeigt ein:

Abbildung 5: Maskenbits der Fahrbefehle

Die folgenden Netzwerke beinhalten die Weitergabe der Fahrbefehle an die Eingangsregister der RCCA. Fügen Sie die Netzwerke wie abgebildet ein.

Abbildung 6: Ansteuerung Eingangsregister

F-Parameter

Damit die ProfiSafe-Fähige RCCA-Karte korrekt angesteuert werden kann, müssen einige sicherheitsgerichtete Einstellungen vorgenommen werden. Wechseln Sie zur Gerätesicht und wählen Sie die RCCA-Karte aus. Belassen Sie für dieses Beispiel die Konfiguration der sicheren Eingänge auf Standardeinstellung.

Öffnen Sie durch einen Rechtsklick auf das RCCA-Modul und Auswahl von "Device Tool starten…" das Programm "Feig-iPar-CRC".

Abbildung 7: iPar CRC - CRC Berechnung

Prüfen Sie alle Einstellungen auf Korrektheit und haken sie diese in der Spalte "accepted" ab.

Durch einen Klick auf "calculate CRC" erhalten Sie eine Checksumme im Feld Decimal. Fügen Sie diese im Feld "F_iPar_CRC" im Reiter "Allgemein" -> "PROFIsafe" des Moduls "PROFIsafe V2.6 6xFDI" ein.

Programmablauf Standardprogramm

Die Programmabarbeitung findet zyklisch im OB1 des Steuerungsprogramms statt. Erstellen Sie einen Ablauf nach dem Schema: Daten lesen, Befehle bearbeiten, Daten schreiben.

Abbildung 9: TST virt. Ausgänge mappen

FEIG

Abbildung 10: Fahrbefehl bearbeiten

Abbildung 11: Eingangsbefehle mappen

Abbildung 12: Daten schreiben

Die Hardwareadresse des Moduls "tst-rcca-x~TST_Door_1" (x entspricht der Variante b/c/d) finden Sie in den PLC-Variablen unter "Standardvariablen".

Beobachten und Steuern

Übersetzen und übertragen Sie nun Hardwarekonfiguration und Steuerungsprogramm. Legen Sie eine neue Beobachtungstabelle unter "Beobachtungs- und Forcetabellen" an, öffnen diese und fügen ihr die Steuerungsmerker m_In13 und m_In14 hinzu. Die Merker Q_Blink, Q_Open und Q_Closed können hier ebenfalls beobachtet werden. Da sie allerdings diskreten Ausgängen zugeordnet sind, ist auch ein Beobachten an den Indikatoren der SPS möglich.

Die Torsteuerung nimmt nun über die Forcetabelle Eingangsbefehle entgegen. Mit m_In13 wird ein Auf-Befehl, mit m_In14 ein Zu-Befehl ausgelöst.

学 👻 🎼 🌆 91 % 🛠 🖤 📽					
	i	Name	Adresse	Anzeigeformat	
1		"ACK"	%M100.0	BOOL	
2		"Trigger_E-Stop"	%M100.1	BOOL	
з		"m_ln13"	%M0.0	BOOL	
4		"m_in14"	%M0.1	BOOL	
5		"Q_Blink"	%Q0.0	BOOL	
6		"Q_Closed"	%Q0.2	BOOL	
7		"Q_Open"	%Q0.1	BOOL	

Abbildung 13: Steuern und Beobachten

Alle weiteren, verfügbaren Informationen der Torsteuerung sind über den DB "DoorControl_DB" abrufbar.